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ABSTRACT
Restoring the estimated 1 billion hectares of degraded forests must consider future climate accompanied 
by novel ecosystems. Transformational restoration can play a key role in adaptation to climate change but 
it is conceptually the most divergent from contemporary approaches favoring native species and natural 
disturbance regimes. Here, we review concepts of novelty in ecosystems with examples of emergent/neo-
native and designed novel ecosystems, with application to transformational restoration. Danish forests 
have a high degree of novelty and provide a realistic context for discussing assisted migration, one method 
of transformational adaptation. Deforestation and impacts of past land use created a highly degraded 
landscape dominated by heathland in western Denmark. Restoration with non-native species began 
150  years ago because the native broadleaves could not establish on the heathlands. Danish forestry 
continues to rely extensively on non-native species. Preparing for transformational adaptation requires 
risky research today to prepare for events in the future and refugia from the last glaciation may provide 
genetic material better adapted to future climate. A new project will test whether species and provenances 
from the Caspian forests in Iran possess greater genetic diversity and superior resistance (physiological 
adaptability) and resilience (evolutionary adaptability) and possibly a gene pool for future adaptation.

Introduction

Forest landscape restoration (FLR) has grabbed the interna-
tional spotlight with the main focus on the Bonn Challenge 
and regional initiatives. Nations, regions and the private sector 
have pledged over 150 million hectares of FLR to commence 
by 2020 (http://www.bonnchallenge.org/). Africa has made 
the most commitments (Figure 1) and more countries in Latin 
America have made commitments to the Bonn Challenge 
than to the regional LAC 20 × 20 initiative (http://www.wri.
org/our-work/project/initiative-20x20/restoration-commit-
ments#project-tabs). The FLR movement has been suggested as 
complementary to other efforts to counter degradation and loss 
of biodiversity, including the UNCCD goal of land degradation 
neutrality (http://www.unccd.int/Lists/SiteDocumentLibrary/
Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf ) and 
the CBD Aichi 15 target to restore 15% of all degraded ecosys-
tems on Earth by 2020 (https://www.cbd.int/doc/strategic-plan/
targets/T15-quick-guide-en.pdf ). Many have suggested that the 
REDD+ efforts under the UNFCCC could produce joint benefits 
of restoration and carbon sequestration (e.g. Rizvi et al. 2015; 
Stanturf et al. 2015). The UN Strategic Plan for Forests calls for 
a target to increase forest area by 3% worldwide by 2030, sig-
nifying an increase of 120 million hectares, an area over twice 
the size of France (https://www.un.org/esa/forests/wp-content/
uploads/2016/12/UNSPF_AdvUnedited.pdf ).

The Bonn Challenge and related efforts at countering centu-
ries of landscape degradation cannot focus on simply correcting 
the excesses of the past or by returning ecosystems to historic, 
pre-industrial states. On-going land use change to meet the 
needs of an expanding global population and changes in climate 
and increased frequency of extreme events are projected to lead 
to novel climates and emergence of novel ecosystems (Williams 
and Jackson 2007; Williams et al. 2007; Caloiero et al. 2016). Thus, 
efforts at restoring degraded forests must take into account future 
climate and provide solutions that are robust under much uncer-
tainty as to the nature of future conditions and adaptive to climate 
change (Spittlehouse and Stewart 2004; Bolte et al. 2009; Keenan 
2015; Stanturf et al. 2015).

FLR is a planned process of restoring ecological integrity and 
enhancing human livelihood that differs from site-level restora-
tion because it seeks to restore ecological processes that operate 
at larger landscape-level scales (SER 2004; Stanturf, Palik, Williams, 
et al. 2014; Mansourian 2017). Some advantages of FLR over eco-
logical restoration include the broad focus on landscape-level 
restoration and the explicit inclusion of livelihoods and food secu-
rity needs, rendering FLR more appropriate in the developing 
world where many opportunities for forest restoration exist in 
mosaic landscapes (Stanturf 2015). Ecological restoration often 
is motivated by restoration to a more natural (i.e. pristine) state 
and then to preserve the restored area (e.g. Stanturf et al. 2001). 
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most future-oriented adaptation strategy. Even though this strat-
egy seems conceptually the most divergent from contemporary 
restoration that focuses on native species and natural disturbance 
regimes (Stanturf, Palik, Dumroese 2014; Stanturf, Palik, Williams, 
et al. 2014), we posit that foresters already have much experi-
ence with novel ecosystems, non-native species and assisted 
migration. Our objective in this paper is to review concepts of 
novelty in ecosystems, present examples of emergent/neo-native 
and designed novel ecosystems and discuss how this applies to 
transformational restoration practices under global change. To 
anchor these discussions in a realistic context, we present a case 
study of Denmark, a country with forests that for historical reasons 
are comprised of a high degree of novelty.

Transformational restoration – what do we mean?

Three types of transformational adaptations are those that are 
adopted at a much larger scale, that are truly new to a particu-
lar region or resource system and that transform places and 
shift locations (Kates et al. 2012). Transformational restoration 
of degraded ecosystems anticipates rapidly changing climate 
and embraces the novelty of emergent and neo-native ecosys-
tems as well as planned novelty in active restoration (Hobbs et 
al. 2006, 2011; Sarr and Puettmann 2008). By novelty, we adopt 
the definition of Radeloff et al. (2015, p. 2051) “… the degree of 
dissimilarity of a system, measured in one or more dimensions 
relative to a reference baseline … novelty varies in degree, it 
is multidimensional, can be measured, and requires a tem-
poral and spatial reference”. The three adaptation strategies 
differ in their tolerance of novelty in the restored ecosystem; 
while transformational adaptation embraces novelty, incre-
mental adaptation is intolerant of novelty and the anticipatory 
strategy has intermediate tolerance of novelty. The degree 
of “novelty-tolerance” can be illustrated by actions regarding 
novel ecosystems, where incremental adaptation would seek 
to prevent establishment of non-native species and emergent 
assemblages of native species in new combinations (neo-na-
tive ecosystems); anticipatory adaptation would allow and 
seek to manage emergent, neo-native assemblages, possibly 
allowing non-native species with functional equivalencies to 
maladapted native species; and transformational manage-
ment would not only manage emergent ecosystems but also 
truly novel assemblages in which non-native species dominate 
(Stanturf 2015).

Novel ecosystems will spontaneously arise under land use 
change and altered climate (Alig et al. 2004; Briske et al. 2015; 
Martinuzzi et al. 2015). Extreme events present opportunities 
to transform ecosystems and incorporate more novelty in the 
near-term but intentional or planned transformation will likely be 
controversial as it goes against the received wisdom that locally 
adapted, native species and natural disturbance regimes are 
best (Leimu and Fischer 2008; Boshier et al. 2015), in the sense of 
most sustainable. Transformational restoration will create novel 
ecosystems by moving species far beyond their historical ranges 
(Pedlar et al. 2012; Lunt et al. 2013; Benito-Garzón and Fernández-
Manjarrés 2015); and by purposeful introduction of non-native 
(Davis et al. 2011) or genetically modified species (Seddon et al. 
2014; Potter et al. 2017). Is there a need for such extreme meas-
ures? What genetic material to move to where? What experience 

Potential disadvantages of FLR are a possible narrow focus on 
local perceptions of needs or demands of funding programs 
rather than broader social needs. For example, restoring degraded 
forests with REDD + funding would not necessarily include bio-
diversity concerns (Alexander et al. 2011; Gardner et al. 2012). 
With respect to the FLR and the Bonn Challenge, Mansourian 
et al. (2017) questioned whether emphasizing pledges of area 
restored (i.e. quantity targets), without regard to the quality in 
terms of functions restored, was not a recipe for “covering vast 
areas of the world in trees of limited value to local people and 
biodiversity” (Mansourian et al. 2017, p. 178). Even though an 
estimated 1 billion to 6 billion hectares of degraded landscapes 
already exist (Laestadius et al. 2011; Gibbs and Salmon 2015), cli-
mate change and business-as-usual land use will add to the need 
to restore ecosystems. This daunting task can best be addressed 
at the landscape scale (Menz et al. 2013; Kuuluvainen et al. 2015; 
Latawiec et al. 2015; Stanturf 2015) and FLR can play a key role in 
adaptation to climate change (Stanturf et al. 2015).

Climate change adaptation strategies can be characterized 
as incremental, anticipatory, or transformational (Joyce et al. 
2013; Pinkard et al. 2015; Stanturf 2015). The incremental strat-
egy is a no-regrets approach where restoration actions provide 
benefits under the current climate; but this is not a business-as-
usual approach. The anticipatory strategy for adaptation uses the 
same techniques but is more future-climate oriented, while the 
transformational strategy takes proactive measures to adapt to 
future climate conditions. Commonalities among these strate-
gies include favouring genotypes adapted to future conditions 
(Pedlar et al. 2011; Williams and Dumroese 2013; Dumroese et al. 
2015), resisting pathogens (Millar and Stephenson 2015), man-
aging herbivory to ensure adequate regeneration (Rooney and 
Waller 2003; Côté et al. 2004), encouraging species and struc-
tural diversity at stand and landscapes levels (Millar et al. 2007; 
Santopuoli et al. 2016) and providing connectivity and reduc-
ing fragmentation (Stanturf 2015; Stanturf et al. 2015). Here, we 
explore transformational restoration, an approach based on the 

Figure 1. Most of the Bonn Challenge commitments, in terms of hectares pledged 
for restoration, have been in Africa.
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do we have that suggests factors to consider in future efforts? The 
following sections will examine these questions in greater detail.

Novel ecosystems

The notion of novel ecosystems as advanced by Hobbs and oth-
ers (Hobbs et al. 2006, 2013) required anthropogenic interven-
tion (disturbance). If a system could return to its former state 
if the disturbance was abated, it was a hybrid ecosystem; if it 
remained in the new state, it was novel (Hobbs et al. 2006, 2013). 
As stated above, we adopt the broader definition of Radeloff et 
al. (2015). Thus, novel ecosystems may emerge as an indirect 
consequence of land use change interacting with ecological 
factors (an emergent or neo-native ecosystem) or by intentional 
creation of a new system by introduction of non-native plants. 
Two examples follow, the Allegheny Hardwoods of north-west-
ern Pennsylvania dominated by black cherry (Prunus serotina 
Ehrh.) in the eastern US and Douglas-fir (Pseudotsuga menziesii 
(Mirb.) Franco) introduction into Western Europe.

Emergent novelty – Allegheny Hardwoods

The dissected Allegheny Plateau in western and central New 
York, northern and western Pennsylvania, northern and west-
ern West Virginia and eastern Ohio is comprised of a southern 
unglaciated part and a northern part that was subjected to 
Wisconsinan glaciation. Prior to European settlement in the 
late 1700s and early 1800s, the forest was minimally affected by 
native Americans and mature and over-mature forests covered 
the plateau with eastern hemlock (Tsuga canadensis (L.) Carr.), 
American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer 
saccharum Marsh.) being the dominant species (Marquis 1975; 
Whitney 1990). Black cherry, red maple (Acer rubrum L.), white 
ash (Fraxinus americana L.) and birches (Betula alleghaniensis 
Britton and B. lenta L.) were common associates, especially in 

stands developing after windthrow. Small stands of white pine 
(Pinus strobus L.) were exploited first by the European settlers 
but cutting remained localized, mostly at lower elevations along 
the major streams until the advent of steam power in the middle 
of the 1800s.

Tanneries that utilized hemlock bark, band mills to produce 
lumber, chemical wood factories to produce charcoal and dis-
tillates and logging railroads transformed the forests. By 1920, 
the virgin and partially harvested forest was almost completely 
clearcut (Marquis 1975). Uncontrolled wildfires in the abundant 
logging slash had an impact on the species composition of the 
forests regenerating in the clearcuts, virtually eliminating white 
pine and confining hemlock to wet riparian areas. Along with 
the liquidation of the original forest, the native white-tailed deer 
(Odocoileus virginianus Zimmerman) was hunted for meat and 
locally extirpated by 1890. Restrictions on hunting and introduc-
tion of deer from other areas began to rebuild deer herds, aided 
by the abundant browse in the clearcuts. By the 1920s, deer were 
so abundant that they were causing significant damage to agri-
cultural crops as well as forest reproduction (Marquis 1975). Deer 
populations peaked in the 1940s and then declined as browse 
became limited in the maturing second growth forests (Figure 2).  
Today, deer populations remain high and create problems for 
regenerating after timber harvest (deCalesta 1994a; Horsley et 
al. 2003) and impacts on the forest floor flora (Tilghman 1989) 
cascade into the fauna (deCalesta 1994b). The trajectories of eco-
system development remain novel, preventing the system from 
returning to a historical state even if the deer populations were 
to be reduced (Royo et al. 2010; Kain et al. 2011)

Designed novelty – Douglas-fir

Large-scale reforestation and afforestation programs globally 
have concentrated on a few genera, principally conifers such 
as Pinus spp. and Picea spp. or broadleaves such as Eucalyptus 

Figure 2. Experiments that use fencing to exclude deer from browsing the understory show their effect on biodiversity and regeneration of woody species. This experiment 
on the Bradford Ranger District of the Allegheny National Forest in northwest Pennsylvania, USA show the effect of deer browse (on the left) versus native understory 
(right of photo). (Credit: US Forest Service).
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(Davis et al. 2011) that are prevalent (Warren 2007; Fleishman 
et al. 2011; Shackelford et al. 2013; Dunwiddie and Rogers 2016; 
Mattioli et al. 2016). Specific issues that have been raised focus 
on the effect of the introduced material on the receiving eco-
system, such as invasiveness, hybridization, pests, or pathogens 
(e.g. Laikre et al. 2010; Byrne et al. 2011; Felton et al. 2013). 
In truth, a certain amount of invasiveness and hybridization 
may be desirable in assisted migration to facilitate establish-
ment of new species or transfer of adaptive traits into native 
populations (Dumroese et al. 2015). The timing of when to 
move material is perhaps a more difficult question than what 
to move or where to move it (McDonald-Madden et al. 2011; 
Rout et al. 2013; Stanturf 2015). Moving material with high 
genetic variation is preferable, although may not be feasible 
for some species threatened by climate change (Aitken et al. 
2008). Empirical evidence of adaptation, through provenance 
testing, will provide the strongest test of whether to operation-
ally translocate species outside their native range (Breed et al. 
2013; Rout et al. 2013) and to intentionally introduce novelty 
into ecosystems. Importantly, adaptation to changing climate 
will be an on-going process; even material adapted to future 
climate conditions must survive current climate environments 
when planted (e.g. Gray et al. 2011).

Three questions require thoughtful consideration and if pos-
sible, empirical investigation. First, how likely is the potential for 
successful movement of material? There are several methods 
available for examining how a species will respond to dispersing 
or being moved to a new location with a suitable future climate 
(e.g. Breed et al. 2013; Lunt et al. 2013; Rout et al. 2013) and all 
require some knowledge of species genetics and traits, which is 
often limited for non-commercial species. The second concern is 
the effect an introduced species may have on the receiving eco-
system (McLachlan et al. 2007; Mueller and Hellmann 2008; Laikre 
et al. 2010; Hewitt et al. 2011; Pedlar et al. 2011). Addressing these 
concerns will be difficult, especially if the receiving ecosystem is 
undergoing change.

The third concern is how will moving material affect the donat-
ing ecosystem, the population of the migrating species, or both 
(Vitt et al. 2010; Williams and Dumroese 2013; Benito-Garzón 
and Fernández-Manjarrés 2015)? This is particularly important 
for rare or endangered species, where removal of material may 
affect the survival of the donating population (McLachlan et al. 
2007; Seddon 2010; Vitt et al. 2010; Loss et al. 2011; Seddon et 
al. 2014). Other concerns are with regard to ethical and political 
concerns, if material is obtained from another country (Carnus 
et al. 2006; Schüklenk and Kleinsmidt 2006; Jackiw et al. 2015).

Transforming ecosystems for improved climate 
adaptation

Global change, the combined effects of climate change, glo-
balization, land use change and interactions, is likely to result 
in significant novelty in forest ecosystems within a single tree 
generation (80–150  years). Adapting to novel conditions, par-
ticularly climate, will require transformational strategies that 
explore and develop plant material adapted to novel condi-
tions. Transformation could be achieved by intentionally creat-
ing novel ecosystems, using biotechnology to create transgenic 
species to replace extinct foundational or keystone species 

spp. and Acacia spp. Often involving intercontinental movement 
and monoculture plantations, such designed novelty can have 
adverse social (e.g. Cao et al. 2011; Andersson et al. 2016) and 
ecological effects (Ledgard 2001; Simberloff et al. 2010; Taylor et 
al. 2016). Experience with Douglas-fir in Europe has been both 
positive and negative, depending upon context (Isaac-Renton 
et al. 2014; Schmid et al. 2014). Introduced from western North 
America, provenance trials began in the 1910s with coastal 
sources from southern Washington or northern Oregon exhib-
iting the best growth (Isaac-Renton et al. 2014 and citations 
therein). Nevertheless, interior sources exhibited the best adap-
tation to drought (Pharis and Ferrell 1966) and low temperatures 
(Rehfeldt 1977).

The analysis of Douglas-fir provenance trials by Isaac-Renton 
et al. (2014) illustrates the trade-off between capacity adaptation 
(growth potential and competitive ability) and survival adapta-
tion. While provenance trials provide ample evidence of growth 
potential, the ability to survive extreme weather events is only 
apparent if an event challenges a provenance at a vulnerable 
growth stage. For example, seedlings are usually more suscep-
tible to near-ground late spring frost or drought than taller or 
just larger trees with more extensive root systems. Thus, data 
from provenance trials should be augmented with physiological 
tests before recommending material transfers (Isaac-Renton et 
al. 2014).

As Douglas-fir has become practically naturalized in portions 
of Europe, reforestation of plantations is not immune to the 
effects of changing climate. Isaac-Renton et al. (2014) examined 
performance of provenances under two climate periods, a stable 
1961–1990 baseline and a 30-year warming trend (1995–2009). 
They argued that the climate envelope of more southerly popu-
lations adapted to drier conditions has shifted northwards and 
new plantings should recognize this change.

Transformational adaptation under climate change

Transformational adaptation differs from other strategies in the 
tolerance of novelty and the introduction of climate-adapted 
material is a key feature. Current regulation and guidance 
on transferring plant material stresses the importance of 
locally adapted material of species within their historic ranges 
(Gustafson et al. 2005; McKenney et al. 2007; Bower et al. 2014). 
Under a changing climate, with the potential for greatly differ-
ent conditions than exist today (e.g. Williams and Jackson 2007; 
Williams et al. 2007), local sources may no longer be adapted 
(Frank et al. 2017). Species will respond to climate change by 
adapting, migrating, or dying out (Aitken et al. 2008; Berg et al. 
2010) and species have adapted to changing climate in the past 
(Jump and Penuelas 2005; Valladares et al. 2014; Boshier et al. 
2015; Espeland et al. 2016). The prospect of rapidly changing cli-
mate and frequent extreme events, along with fragmentation of 
many landscapes, may overpower the ability of species to adapt 
(Chapman et al. 2014; Park et al. 2014; Pacifici et al. 2015) or 
migrate (Iverson et al. 2004; Pearson 2006; Corlett and Westcott 
2013; Stanisci et al. 2016).

Assisted species migration (Williams and Dumroese 2013), 
where species or genetic material is moved or obtained from 
far outside current ranges, can overcome limitations on spe-
cies movement but this challenges notions of native species 
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Experience from Denmark

Danish forestry has a long tradition of using non-native tree spe-
cies. Following the retreat of the glaciers the natural forests of 
Denmark included rather fewer species compared to temperate 
forests in North America and Asia and most of the country was 
deforested (Bradshaw 2005; Madsen et al. 2005). The forest res-
toration history of Denmark includes several forest generations 
over the past 200  years. Similar processes took place in other 
parts of north-western European lowlands including heathland 
tracts of northern Germany (Mather et al. 1998; Bradshaw 2004). 
Because Denmark is all lowland (highest elevation 170 m above 
sea level), there are no mountainous regions where natural for-
ests could be protected against clearance and changes in land 
use. Therefore, little natural forest survived and definitely no vir-
gin forest (Johannsen et al. 2013).

Forest landscape restoration

In Jutland (western Denmark), deforestation and impacts of 
shifting agriculture, grazing and fire created a highly degraded 
landscape that was dominated by heathland in the western and 
northern parts of the peninsula. The introduction of non-native 
species – particularly conifers – was needed both because the 
native broadleaves could not establish on the degraded heath-
lands (Madsen et al. 2005) and because society and people were 
in great need of the wood resources for construction and energy 
(Figure 3). Additionally, overgrazing and fire often destroyed 
the heather to an extent that the sandy soil was exposed to the 
wind and could start forming dunes that eventually threatened 
to cover houses and whole villages. These sandy soils were char-
acterized by total lack of forest micro-climate and very acidic soil 
types (podzols) and as such the conditions for restoring forests 

or genotypes better adapted to future climate (e.g. Castenea 
dentata (Marshall) Borkh.; Jacobs 2007; Jacobs et al. 2013) or 
synthetic biology to create designer organisms with hereto-
fore unknown capabilities (Stanturf 2015). This new material 
(whether species, provenances, or clones) must be adapted to 
current and future conditions and could be analogous, non-na-
tive species or genetically altered versions of native species (with 
genes from closely related or unrelated organisms, respectively, 
termed cisgenic or transgenic). One source for more adaptive 
genetic material is refugial populations (Keppel and Wardell-
Johnson 2012; Hannah et al. 2014).

Refugial populations

Species can survive adverse climatic conditions in refugia, areas 
with more favourable conditions (Keppel et al. 2012). Stable cli-
mate over time often gives rise to species-rich refugia that main-
tain endemic species (Dynesius and Jansson 2000). Pleistocene 
glacial oscillations in northern Europe markedly shaped the dis-
tribution and genetic makeup of species (Comes and Kadereit 
1998). Pleistocene refugia today are characterized by high 
genetic diversity and refugial areas may be distinctly different 
genetically. Areas that have been recolonized from different ref-
ugial regions often have higher genetic diversity but may show 
lower differentiation (Comps et al. 2001; Widmer and Lexer 2001; 
Petit et al. 2003; Bouriaud et al. 2015). Glacial ice covered north-
ern Europe and temperate species survived in Iberian, Italian, 
Balkan refugia (Bennett et al. 1991; Taberlet et al. 1998). The area 
south of the Caspian Sea is a biodiversity hotspot (Akhani et al. 
2010; Farashi and Shariati 2017) and recently has been proposed 
as a glacial refugia for temperate forest trees (Leroy and Arpe 
2007).

Figure 3. Survival and growth of seedlings planted on degraded sites in western Denmark were low and only non-native conifers could survive the conditions. Here are 
some of the last remnants of the 1st generation mountain pine (Pinus mugo Turra) planted to restore forest conditions 150 years ago. Such examples may still be seen in 
the coastal dune areas along the Danish coast. (Credit: Palle Madsen).
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of the coastal mountains facing the Strait of Messina were not 
exposed to the extreme conditions of the periglacial climate and 
therefore escaped genetic bottlenecks caused by the reduction 
of population size due to the harsh climate that affected the pop-
ulations that spread into the European continent (Larsen 1994). 
Nevertheless, the Calabrian silver fir provenances were blocked 
from migrating north because the lowlands immediately north 
of Calabria were unsuitable for silver fir; therefore it was silver fir 
from the more northern and more genetically narrowed refugial 
populations that immigrated into Europe after the last glaciation.

The Danish example shows that an initial reliance on use of 
non-native species later created opportunities to reintroduce 
native species as well as other non-native species with desired 
functions (Figure 4). The challenge for the future is how to adapt 
to climate change; one idea is to search for new genetic material 
to transform Danish forests. This search has turned towards the 
Caspian forests of Iran.

New genetic material from Caspian forests

The Caspian forests are probably the largest forest area of tem-
perate deciduous forest containing European flora that had little 
or minimal exposure to the two factors, ice age pauperization 
and human exploitation, that drastically reduced the number 
of species in Europe as well as their genetic diversity. The ref-
ugial populations in these Caspian forests may contain genetic 
material with potential for European forests and their ability to 
adapt to future challenges of climate change and new diseases 
and pests. Science-based statements about adaptability to cli-
mate, diseases and pests require establishment of field trials, 
while genetic diversity and population genetic structure and 
processes can be measured by DNA analyses. A new project is 
underway to contribute to the understanding of the evolution-
ary processes that European forest tree species have undergone 

were extremely poor. Needless to say that all seed sources had 
disappeared centuries ago – and relying on natural regeneration 
or succession was not an option. The non-native mountain pine 
(Pinus mugo Turra) was one of the few species that could survive 
and grow on the degraded sites in western Denmark that were 
restored (afforested) over 150 years ago (Figure 3).

Danish forestry today

Danish forestry continues to rely extensively on non-native spe-
cies. A large number of non-native tree species were tested to 
identify those sufficiently tolerant and productive under local 
conditions. Except for Scots pine (Pinus sylvestris L.), all produc-
tive conifer species – including Norway spruce (Picea abies (L.) 
Karst.) – are non-native. Non-native species are integrated in 
the close-to-nature approach to forest management currently 
in vogue, as long as they are used where they are adapted to 
site and can contribute to the formation of healthy continu-
ous cover forests that later are capable of supporting natural 
regeneration of the desired tree species. Typical desired species 
among the non-natives with these characteristics are European 
and Japanese larch (Larix decidua Mill. and L. kaempferi (Lamb.) 
Carr.), Douglas-fir and European silver fir (Abies alba Mill.).

Silver fir in particular provides another example of introducing 
novelty into the Danish landscape and the relationship between 
adaptability and genetic variation. Through long-term field trials 
that were established in Denmark in 1934–1935, it was shown in 
the 1980s that Calabrian silver fir from southern Italy had superior 
health and growth compared to a wide range of silver fir prove-
nances from southern and central Europe, from areas geographi-
cally and climatically more similar to Denmark (Larsen 1986). The 
Calabrian provenances have substantially greater genetic diver-
sity than the other provenances (Bergmann et al. 1990), lead-
ing to the hypothesis that the Calabrian silver fir provenances 

Figure 4. Restored forest landscapes on formerly degraded land in Denmark; here are the highly productive mixed stands of Norway spruce (Picea abies (L.) Karst.) and 
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a novel forest ecosystem with non-native tree species in Denmark. (Credit: Palle Madsen).
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with climate modelling that showed the climatic conditions in the 
region of the Caspian forests were suitable for temperate broad-
leaved trees during glaciations (Leroy and Arpe 2007).

The Caspian forests’ genetic pools are considered to be closely 
linked or related to the initial populations and genetic diversity. 
The forests have only to a lesser extent been affected by paleocli-
mate fluctuations compared to corresponding deciduous forests 
in Europe, North-east America and the Far East (Adams and Faure 
1997). Especially in Europe, the flora faced geographical barriers 
to migration caused by the east-west mountain ranges and the 
Mediterranean Sea (Hewitt 1999), resulting in limited and unfa-
vourable refugial areas to survive the glacial advances. As a result 
of these barriers, species were eliminated from the continent or 
their population sizes reduced to such a degree that genetic var-
iability has been reduced considerably (Hewitt 2000).

A gene pool for the adaptation of European forests?

A new project will test whether species and provenances from 
the Caspian forests possess greater genetic diversity and supe-
rior resistance (physiological adaptability) and resilience (evo-
lutionary adaptability) as compared to comparable Danish/
European forest tree seed sources. The intent is to collect 
seed from 6 selected tree species in the Caspian forests, each 
represented by up to 9 provenances. The seed will be used to 
establish provenance trials in afforestation areas in Denmark 
and Iran. The trials will also include European/Danish reference 
provenances and a comparative study for Caspian and European 
species in Denmark and Iran. Test material will be subject to 
quantitative genetic analyses in additional fast-track single tree 
plot trials. The DNA of all 6 species will be analysed to compare 
genetic diversity between the Caspian and Danish/European 
forests, as well as to describe the population genetic struc-
ture of the source populations. The provenance trials will be a 
unique infrastructure for the next decades for studies of forest 

as a function of selection pressure (ice ages/human influence) 
and isolation (refugial conditions) and how these processes 
have influenced genetic diversity and adaptive potential of the 
tree species. Eventually, this material may be used to transform 
Danish forests to adapt to global change. We briefly describe 
this effort as an example of the kind of “risky” research (Park et al. 
2014; Stanturf 2015) needed to prepare for a novel future.

Caspian forests

South of the Caspian Sea in Iran, the species rich Caspian forests 
cover the north facing slopes of the east-west tending Elburz 
Mountains. Rising up 3000–5000 m, these slopes receive heavy 
rainfall and are covered by 1.8 million hectares of Caspian for-
ests, of which 100,000–200,000 hectares are considered pristine 
forest, as inaccessibility has limited utilization and human influ-
ence. The Caspian forests date back to before the Pleistocene 
(more than 2.6 million years ago), previous to the repeated 
advances and retreats of the glacial ice masses farther north in 
Europe. The distributions of forest species have shifted slightly 
during the changing climates of the glacial and interglacial peri-
ods (Sagheb-Talebi et al. 2014; Ravanbakhsh et al. 2016; and ref-
erences therein) but they have persisted for millennia.

The Caspian forests have benefited from long-term continuity 
in forest cover (Ramezani et al. 2008) and today contain many 
tree species that are also indigenous in Denmark and Europe 
(Figure 5), for example Ulmus glabra Huds., Carpinus betulus L., 
Fraxinus excelsior L. and Sorbus torminalis (L.) Crantz (Sagheb-
Talebi et al. 2014), as well as a number of endemics, including 
Acer velutinum, Quercus castaneifolia C.A.Mey and Pyrus boissieri-
ana Buhse. Caspian forests also contain Zelkova carpinifolia (Pall.) 
Dippel, Pterocarya fraxinifolia (Lam.) Spach, Parrotia persica (DC.) 
C.A. Mey., Gleditschia caspica Desf. and Populus caspica (Bornm.) 
Bornm., Arcto-Tertiary relicts that became extinct in other regions 
(Akhani et al. 2010; Sagheb-Talebi et al. 2014). This is consistent 

Figure 5. A chestnut-leaved oak (Quercus castaneifolia C.A.Mey) more than 600 years old in the Caspian forest of Iran. This tree is 45 m tall with a diameter at breast height 
of more than 2 m. (Credit: Palle Madsen).
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impacts, strategies and integrative concept. Scand J Forest Res. 24:473–
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Restoration of boreal and temperate forests. Boca Raton (FL): CRC Press; 
p. 15–30.

Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ. 2013. Which 
provenance and where? Seed sourcing strategies for revegetation in a 
changing environment. Conserv Genet. 14:1–10.

Briske DD, Joyce LA, Polley HW, Brown JR, Wolter K, Morgan JA, McCarl BA, 
Bailey DW. 2015. Climate-change adaptation on rangelands: linking 
regional exposure with diverse adaptive capacity. Front Ecol Environ. 
13:249–256.

Byrne M, Stone L, Millar MA. 2011. Assessing genetic risk in revegetation. J 
Appl Ecol. 48:1365–1373.

Caloiero T, Callegari G, Cantasano N, Coletta V, Pellicone G, Veltri A. 2016. 
Bioclimatic analysis in a region of southern Italy (Calabria). Plant Biosyst. 
150(6):1282–1295.

Cao S, Chen L, Shankman D, Wang C, Wang X, Zhang H. 2011. Excessive 
reliance on afforestation in China’s arid and semi-arid regions: lessons in 
ecological restoration. Earth-Sci Rev. 104:240–245.

Carnus J-M, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A. 2006. 
Planted forests and biodiversity. J For. 104:65–77.

Chapman S, Mustin K, Renwick AR, Segan DB, Hole DG, Pearson RG, Watson 
JE. 2014. Publishing trends on climate change vulnerability in the 
conservation literature reveal a predominant focus on direct impacts and 
long time-scales. Divers Distribut. 20:1221–1228.

Comes HP, Kadereit JW. 1998. The effect of Quaternary climatic changes on 
plant distribution and evolution. Trends Plant Sci. 3:432–438.

Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit R. 2001. Diverging 
trends between heterozygosity and allelic richness during postglacial 
colonization in the European beech. Genetics 157:389–397.

Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate 
change? Trends Ecol Evol. 28:482–488.

Côté SD, Rooney TP, Tremblay JP, Dussault C, Waller DM. 2004. Ecological 
impacts of deer overabundance. Annu Rev Ecol Evol Syst. 35:113–147.

tree adaptability and climate change that complements exist-
ing provenance trials in Denmark (Kjær et al. 2014; Myking et 
al. 2016) and the experience in Iran with 33 conifer species and 
provenances trials along longitudinal and latitudinal transects 
in the Caspian region. Promising species from these 25  year-
long trials are Pinus nigra Arnold, P. sylvestris L., Douglas-fir, Abies  
nordmanniana (Steven) Spach), P. abies (L.) Karst. and Sequoia 
sempervirens (D. Don) Endl.

Assisted migration: a final comment

Foresters have much experience with moving woody species 
to new environments and should be able to identify likely suc-
cesses and avoid potential adverse effects. Refugial populations 
may provide material, whether analogous species or genetic 
material for breeding programs. Empirical investigations, such 
as the provenance trials underway in Denmark and Iran, will pro-
vide short-term answers and a valuable resource for long-term 
investigations. The need for restoration, already significant, will 
only increase due to extreme climatic events, altered climate 
means and land use change. Although much uncertainty sur-
rounds decisions of when to introduce novelty into ecosystems, 
the most critical ecosystems are those where climate and land 
use are projected to change rapidly (Stanturf 2015). Extreme 
events will provide opportunities for changing species or 
genetic composition of forests to reduce vulnerability to future 
climate alterations; preparing for transformational adaptation 
requires risky research today to prepare for events in the future 
(Sarr and Puettmann 2008; Park et al. 2014).
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